Doc. Number: X3J16/92-0028

WG21/N0105
Run-Time Type Identification for C++ P A
Bjarne Stroustrup of(. 7\
/
AT&T Bell Laboratories /
f'A"G""{ (P/ /°) Murray Hill, New Jersey 07974 B . C
/~4{17,(u4<17> (/") Drmitry Lenkov \ \‘;/
Coed < P*>(/7) HP Language Labs 1%
<p> ([> D cantd
(Po>) ABSTRACT “’w b
(AMAALM(D) f> 2 d
This paper describes a proposal for a mechanism for run-time type identification and ad Ao A

checked type casts. The mechanism is simple to use, easy to implement, and extensible.
This proposal evolved through a series of earlier proposals and ideas. Experimental
implementations exist. Warning: This is a proposal and the features described may never
be accepted into Ci+.

1 Introduction

The need to use run-time type information explicitly in a program arises when one has a pointer or a
reference to some object that may be of a class derived from the base class known at compile time and one
wants to perform some operation that makes sense only for an object of the derived class. For example,
given the classes

class dialog_box : public window {
// ..
public:
// ...
virtual int ask();
// .
}i

class dbox_w_str : public dialog_box {
/...
public:

/7 ...
int ask();
virtual char* get_string();
/7 ...
}:

we may call ask () for every dialog_box but may call get_string() only for dialog_boxs
known to be dbox_w_strs. Given only a dialog_box* how can we figure out if it really points to a
dbox_w_str?

There are several ways of defining the dialog_box and dbox_w_st r classes so that the answer can
be found. The most popular are to place a type field in dialog_box and/or define a virtual fimction in
dialog_box that gives the answer. Many C++ libraries provide mechanisms for explicit use of nn-time
type identification (RTTI) for their classes [2,3,5, and 10] and detailed explanations of how to implement
them can be found in [4,8,9). What is proposed here, however, is a language supported mechanism:

void my_fct (dialog_box* bp)
{
if (typeid(bp) == Typeid<dbox_w_str>()) { // is bp a dbox_w_string?
dbox_w_str* dbp = (dbox w_str*)bp;

// here we can use dbox_w_str::get_string()

else {

// ‘plain’ dialog box
}

/7 ...
}

The operator typeid returns an object that identifies the type the object pointed to by its pointer argu-
ment. Similarly, the operator Typeid returns an object that identifies the type of its type name argument.
In particular, typeid (bp) returns an object that allows the programmer to ask some questions about the
type of the object pointed to by bp. In this case, we asked if that type was identical to the type
dbox_w_str.

This is typically not the right question to ask. The reason to ask anything at all is to see if some detail
of a derived class can be safely used. To use it, we need to obtain a pointer to the derived class. In the
example, we used a cast on the line following the test. Also, we are typically not interested in the exact
type of the object pointed to, but only in whether we can perform the cast. Instead, this question can be
asked directly:

void my_fct (dialog_box* bp)
{
dbox_w_str* dbp = (dbox_w_str*)bp;

if (dbp)

// here we can use dbox_w_str::get_string ()
}

else {

// ‘plain’ dialog box
}

/7 ...
}

The type cast operation converts its argument to the desired type if possible and otherwise it returns 0.
That is, we change the semantics of casting to perform the run-time test. The compatibility implications of
this change are less than what they appear at first glance and will be discussed in §4.

Such a cast is often called safe because the result of an attempt to cast a pointer to a type that is wrong
for the object it points to results in the well-defined pointer 0. It is also often called a downcast because
many people draw classes with derived classes below their bases. To avoid making users overconfident, we
prefer to call such casts checked rather than safe.

Nawrally, an implementation of the checked cast will rely on the same kind of information as the
typeid operator and share a large part of its implementation.

There are several advantages to merging the test and the cast into a sinle checked cast operation:

— The cast notation is less verbose than alternatives using named operations.

~ The cast notation does not require the introduction of additional key words.

- By using the information available in the type information objects it is possible to cast from a virtual

base class to a derived class; see §5.

- This notation makes it impossible to mismatch the test and the cast.

As examples of such mismatches, consider:

void my_fct (dialog_box* bp)
{
if (typeid(bp) == Typeid<dialog_box>()) {(
dbox _w_str* dbp = (dbox_w_str*)bp;

// here we can use dbox_w_str::get_string()
) .

/7 ...
}

where the user checked against the type of the base class dialog_box instead of the derived class
dbox_w_str, and

void my_fct (dialog_box* bp)
{
if (typeid(bp) != Typeid<dbox _w_str>()) {
dbox_w_str* dbp = (dbox w_str*)bp;

// here we can use dbox_w_str::get_string()

}

/1l ...
}

where the user applied the explicit cast on the wrong branch of the i £ statement. Both kinds of errors have
been seen in real systems.
The notation is still redundant in that dbox_w_st r is mentioned twice in
dbox_w_str* dbp = (dbox_w_str*) bp;
However, removing that redundancy would leave the programmer without a clearly visible clue that some-

thing “‘interesting’’ is going on, and would also allow the use of the checked cast in contexts where the
desired type is not clearly visible. This redundancy also enables an added degree of checking:

extern void f(dbox_w_str* dbp);
1/ «..

void g(dialog_box* bp)
{
£(bp); // error: cannot (implicitly) convert
// f£rom a base to a derived class

£ ((dbox_w_str*)bp); // ok: explicit cast

2 Declarations in Conditions

As a final simplification we might adopt the Algol68 notion that declarations yield values and thereby
aflow declarations in conditions. We could then write this:

void my fet (dialog_box* bp)
{
if (dbox _w_str* dbp = (dbox_w_str*) bp) {

// use ‘dbp’
}

/7 ...
}

The value of a declaration is the value of the declared variable after iniﬁalizaﬁon. To avoid syntax

-4-

problems, we do not suggest that declarations can appear everywhere an expression can (which would be
the cleanest semantic notion) but only that declarations of a single initialized variable can appear in the con-
dition part of if, for, while, and switch statements. Allowing declarations in conditions of condi-
tional expressions and do statements seems to add complications rather than utility so we don’t propose
that

This extension is, of course, independent of the notion of run-time type identification. It simply attacks
the problem of use of uninitialized variables directly. For example:

void f(Iter<Name> it)
{
while (Record* r = it.next()) {
// process ‘*r’
}
}

The scope of a variable declared in a condition is the statement or statem:ents controlled by the condition.
In particular, a variable declared a condition of an if statement is in scope in the else part of that state-
ment. Naturally, the variable will most often be 0 in the else statement, but it is possible to construct
examples where it is not. For example, consider a class X with an operator int ():

void g(int b)
{
if (X x1 = b) {
// we get here if xl.operator int()
// doesn’t yield 0
}
else {
// x1 has a meaningful value even here
}
}

Itisnotlega.ltodeclareavaﬁablewiththesamemeinboﬂnheoondiﬁmandinmeoummostblockofa
statement controlled by the condition. For example:

if (Name* p = find(s))

{
char* p; // error: multiple definition of ‘p
/..

}

This rule parallels the rule that an argument name may not be redefined in the outermost block of a func-
tion: :

void f (Name* p)

{
char* p; // error: multiple definition of ‘p’
// ...

3 Uses and Misuses of RTTI

One should use explicit run-time type information only when one has to; static (compile-time) checking
is safer, implies less overhead, and — where applicable - leads to better structured programs. For example,
RTTI can be used to write thinly disguised switch statements:

-y

void rotate(const Shape* ps) // misuse of RTII
{
if (typeid(ps) == Typeid<Circle>()) {
// do nothing

)
else if (typeid(ps) == Typeid<Triangle>()) {
// rotate triangle

)

else if (typeid(ps) == Typeid<Square>()) {
// rotate square

}

// LN]
}

This style of code is most often best avoided through the use of virtual functions.

Manyexamplsofpropauseofkmarisewhaesanesavicecodeisexpressedinwnnsofoneclass
and a user wants to add functionality through derivation. The dialog_box example from §1 is an exam-
ple of this. If the user is willing and able to modify the definitions of the library classes, say
dialog_box, then the use of RTTI can be avoided; if not, it is needed. Even if the user is willing to
modify the base classes, such modification may have its own problems. For example, it may be necessary
to introduce dummy implementations of virtual functions such as get_stzing () in classes for which the
virtual functions are not really needed or not particularly meaningful.

For people with a background in languages relying heavily on dynamic type checking, it is tempting to
overuse RTTI together with overly general object types. For example:

// misuse of run-time type information:
class Object { /* ... */):

class Container : public Object {
1/ «ee
publiec:
void put (Object?);
Object* get();
// ..
}:

class Ship : public Object { /* ... */ }:

Ship* £ (Ship* pl, Container* c)
{
c=>put (pl);
// <.,
Object* p2 = c=>get ()
if (Ship* p3 = (Ship*) p2) // run-time type check
return p3;
else {
// do something else
}
}

Problems of this kind are often better solved by using container tempiates holding only a single kind of
pointer:

template<class T>
class Container ({
// ...
public:
void put (T*):
T* get():
// ...
}:

Ship* f(Ship* pl, Container<Ship>* c)
{

c->put (pl) ;

// ...

return c->get();

}

Combined with the use of virtual functions, this technique handles most cases.

However, where the type of an object returned from some function cannot be determined at compile
time from the types of its arguments, RTTI again becomes a reasonable choice. For example, consider a
couple of classes where objects can be compared using information from a common base class only:

class X { /* ... */ int key: /* ... */ };
class D1 : public X { /* ... */ }
class D2 : public X { /* ... */ }

e %o o

X* greater(X* p, X* q) { return (p->key > gq->key) 2 p : q:)

void £(D1* a, D2* b)
{
X* res = greater(a,b):;
if (D1* p = (Di*)res) {
// ...
}
else

/7 ...
}
}

Finally, RTTI has an important role in pure optimizations. Consider a function using an abstract set class:
void fct (set<T>* g)
{
for (T* p = s->first(); p; p = s->next()) (

// ordinary set algorithm
}

/7 ...
}

This is nice and general, but what if we knew that many of the sets passed were implemented by singly
linked lists, s1ists, if we knew an algorithm for the loop that was significantly more efficient for lists
than for general sets, and if we knew (from measurement) that this loop was a bottleneck for our system? It
would then be worth our while to expand my code to handle s1ists separately:

'7' Jmpd W MA/E

il

if (slist<T>* gl = (slist<T>*)g) (// s is an slist

void fct (set<T>* s)
{

for (T* p = sl->first(); p: p = sl->next()) {

// souped up list algorithm
}
}
else (-
for (T* p = s=>first(); p; p = s->next()) {

// ordinary set algorithm
}

/7 ...
}

Naturally, this leads to messier code and makes £ct () depend directly on the the slist class, but that
can sometimes be a worthwhile price to pay. In particular, in the case above we not only get the benefit
from an improved algorithm but also avoid virtual function calls (on the abstract class set) in favor of the
inline functions (on the concrete class s1ist). However, one should aim to design systems so as to mini-
mize the use of RTTL

4 Checked and Unchecked Casts e Some %0 Ao d A
- ol Anre ¥, o~

The introduction of run-time type identification separates objects into two categories: The ones that
have run-time type information associated so that their type can be detexmined (almost) independently of
context and those that haven't. Why? We cannot impose the burden of being able to ideatify an object’s
type at run-time on built-in types such as int and double without unacceptable costs in run-time, space,
and layout compatibility problems. A similar argument applics to simple class objects and C-style structs.
Consequently the first acceptable dividing line is between objects of classes with virtual functions and
¢classes without. The former can easily provide run-time type information, the latter cannot.)

Experience shows that this works acceptably, but that it is possible ;or people to get confused about
which classes have virtual functions and thus about what the real meaning of a cast is. This leads to a wish
for an explicit way of saying *this class supports RTTI whether it has virtual functions or not.”*

First we note that there already is a way. Simply define a class with a virtual function and derive from

Pt
umyclassthatyoud'sn'eu.)beexphm.abouc < ead IRE
class rtti { virtual void __dummy () e?ﬁé }:
class X : public ztti { /* ... */ }¢

Unfortunately, this implies a space overhead (especially if it is included in lots of places) and because class
rtti is so small, making it a virtual base will not provide any significant saving:

class X : public virtual ztti { /* ... */ };

It is also clear that “*public wirtual rtti® islong enough o be tedious to write after a while so we
considered some syntactic sugar:

class X : virtual { /* ... */ }:
virtual class X { /* ... */ }; 47‘—»435
class X { virtual:; /¢ ... t/ };

However, people instantly started imagining a variety of meanings for such notations. In particular, *‘Oh
neat, so X is an abstract class!"* and *‘l have always wanted to be able to declare all functions virtual in
one place’® were not uncommon reactions. For now, we don't have an acceptable suggestion for a more
explicit way of saying *‘this class has run-time type information.’* If you want such information, be sure 1o
have at least one virtual function in the base class you want a checked cast from.

The cast (D*)p is legal for any type D and for any pointer p. If p’s static type is *‘pointer to a class

without virtual functions,’’ the semantics of the cast remain unchanged. This implies that C compatibility
is strictly maintained and that no overheads are imposed except for classes with virtual functions. If on the
other hand p’s static type is *‘pointer to a class with virtal functions’ the: meaning of (D*) p is ‘‘check if
the type of *p is D or has D as a unique base; if so, return a pointer to the object of class D containing the
object of class B that p points to; otherwise, return 0."" The implementation requires a combination of
compile-time and run-time support work. A plausible implementation will generate code like
(D*)_ptr_cast (p,offset, Typeid<D>(),typeid(p)) where _ ptr_cast() is some
library function that returns a void* for a checked cast (D*)p.

This will imply the overhead of a double run-time type check for G+ programs that are written using
some user-implemented run-time type identification scheme and not converted to the use of the new facili-
ties. For example:

void £ (dBox* p)
{

if (p->isKindOf (stringBox)) { // explicit type check
stringBox* q = (stringBox)p; // implicit type check
// ...

}
}

However, the program will run correctly provided the isKindOf () function was correctly implemented.
The trivial conversion will yield this shorter and more efficient version:
void f(dBox* p)
{
if (stringBox* q = (stringBox)p) {
/] ...
}
)

In general, old programs using casts to derived classes will yield the same result under the checked cast
semantics as they did under the old (unchecked and fast) semantics, providing the object pointed to really
was of the type asserted in the cast. ‘This has been the case for all reasonable examples we could think of.
Note that a cast to void* can be used to suppress any sort of checking and allow completely arbitrary
type conversion:
class A { /* some virtual functions declared */ };

class B : public A { /* ... */ };
class C : public A { /* ... */ };

void £()
{
A* pa = new B;
B* pb = (B*)pa; // sames result as ever
C* pc = (C*)pa; // used to initialize pc witl a pointer that didn’‘t
// point to a C and would cause wrong results
// if used as a C+*.,

// Now it initializes pc witk 0; will cause wrong
// results if used as a C*.

pb = (B*) (void*)pb; // on your head be it!
pc = (C*) (void*)pa; // on your head be it!
}

% Thus a cast of void* serves as an operator explicitly suppressing checking and thus relieving us of the
burden of inroducing a new operator to allow us t0 explicitly distingui :h checked conversions from or
unchecked ones. '
When many or even most pointer casts thus becomes checked, it becomes practical to detect and warn
about unchecked casts so as to allow the programmer to determine if they are in fact dangerous. This must
be done with a reasonable amount of taste, though, t avoid fanatical condemnation of all casts. Such a

Joand MM!NI

-9.

condemnation would imply a rejection of C compatibility and also cause real problems for people who
actually need unchecked casts. Casting between class pointer types without using (void*) to explicitly
suppress checking might be considered suspicious. For example

class X { /* no virtual functions */ };

class Y { /* ... */ };

void g(X* px)
{
Y* pyl = (Y*)px; // suspicious cast: warn
Y* py2 = (Y*) (void*)px; // on your head be it!

§ Casting from Virtual Bases

Nowﬂmmepiolu’biﬁmofcasﬁngfmmavimmlbaseclastoitsduivedclasscanbelifwdforclasses
with virtual functions so that casting from ordinary and from virtal bases are handled identically:

class B { /* ... */ virtual void £(); }:
class V { /* ... */ virtual void g(); };

class D : public B, public virtual V { /* ... */ };

void g(D& d)
{
B* pb = ¢d;
D* pdl « (D*)pb; // ok

V* pv = &d;
D* pd2 = (D*)pv; // ok (didn’t use to work)
]

The reason for the prohibition was that there wasn’t enough information available sbout a base class object
to do the cast from a virtal base. In particular, an object of a type with layout constraints determined by
some other language such as Fortran or C may be used as a virtual base class and for objects of such types
only static type information will be available. However, the information needed to provide run time type
identification includes the information needed to implement the checked cast.

Naturally, such a cast can only be performed when it is unambiguous. Consider:

class A : public virtual V { /* ... %/ };
class D1 : public A { /* ... */ };

class D2 : public A { /* ... */ };

class X : public D1, public D2 { /* ... */ };

Or graphically:
A/}' ‘\\A
11; JL
\./

Here an X object has two sub-objects of class A. Consequently, a cast from V 0 A within an X will be
ambiguous and return a 0 rather than a pointer to an A:

-10-

void hl (X& x)
{

V* pv = §X;

A* pa = (A*)pv; // pa will be initialized to 0
}

This ambiguity is not in general detectable at compile time:
void h2 (V* pv)
{

A* pa = (A*)pv; // pv might point to an X
// and then 0 will be returned

// or it might point to a ‘‘plain A’’
// and then a correct pointer to A will be returned
}

This kind of run-time ambiguity detection is only needed for virtual bases. For ordinary bases, the proper
sub-object to cast to can always be found. Consider the example above rewritten to use ordinary bases:

class A : public V { /* ... */ };

class D1 : public A { /* ... */ };

class D2 : public A { /* ... */ }; :
class X : publiec D1, publiec D2 ({ /* ... */ };

Here an X object has two sub-objects of class A each with a sub-object of class V.

void hl (X& x)
{
V* pv = &X; // compile time error: ambigucus: which A?

V* pvl = (V*) (D1*)&x; // ok: Dl's V

V* pv2 = (V*) (D2*)ex; // ok: D2’s V
- A* pal = (A*)pvl; // ok: Dl’s A

A* pa2 = (A*)pv2; // ok: D2’s A

}

Accepting this example makes the definition of checked casting messier, but it only complicates the imple-
mentation of the run-time support code by a dozen lines out of three dozen or so. If we disallowed it, we
would never see the end of people who also discovered the algorithm and felt cheated by the language not
requiring a resolution that was possible.

Note that because checking of casts is triggered by information in a base class and cannot be done with-
out information accessible through the base class, adding information to a derived class is of no help; in
particular it is not possible to require casts to a class with a virtual base class to be checked. For example:

class V { /* no virtual functions */ };
class A : public virtual V { /% ... */ };

void £{)

{
V* pvl = new V; // no RTTI, no connection to any A
V* pv2 = new A;

A* pl = (A*)pvl; // (compile time) error: no information to go by
A* p2 = (A*)pv2; // (compile time) errer: no information to go by
}

Thus, a cast from a virtual base class to a derived class is legal and checke i or illegal dependent on the defi-
nition of the base class (only).

-11-

6 Cross Hierarchy Casting

Two related questions must be answered:

- Should casting be constrained to derivation relationships known at compile time?

- Should it be possible to cast from a class to a sibling class in a multiple inheritance hierarchy?
For example:

class A { /* ... */ virtual void £(); };
class B { /* ... %/ virtual void g(): };
class D : public A, public B { /* ... */ };
class X;

void £(A* pa)
{

X* px = (X*)pa; // X undefined: legal?

B* pb = (B*)pa; // B apparently unrelated to A: legal?
)

Is the cast (X*) pa legal, and if so what is its meaning? If it is legal two interpretations are possible:

{1] px is initialized with pa’s bit pattern.

[2] The object pointed to by pa is examined and a checked cast is performed, that is, if *pa really hasa

unique sub-object of class X then px is made to point to it; otherwise px will be initialized to 0.

A similar choice exists for the meaning of the cast (B*) pa.
In both cases the suggested resolution is to do the checked cast. In the case of a cast to an undefined class
this decision ensures that the same result is obtained independently of whether the class declaration has
been seen or not .

Consider the following set of classes:

class employee { /* ... */ };

class manager : public employee { /* ... */ };

class analyst : public employee { /* ... %/ };

class engineer { /* ... */ };

class electrical_engineer : public engineer { /* ... */ };
class mechanical_engineer : public engineer { /* ... */ };

If we want to ask questions like:

~ Is this engineer a manager ?

- Does this employee have an EE degree ?

- How many analysts have an engineering degree ?
andwewammusehngmgefeamnﬂmﬂmalguithns.ﬂnnwewﬂl&ﬁne:.

class manager with_ee
: public manager, public electrical_engineer
{ /% ... */ };

class manager_with_me
: public manager, public mechanical_engineer
{ /% ... %/ };

Or graphically:
engineer employee engineer employee
me manager ee analyst

manager_w_me manager_w_ee

We can then use checked casts like this:

»

-12-

my_fct (engineer* pel, employee* pe2)
{
if (manager* m = (manager*)pel) {
// this engineer is a manager
}
/...
if (electrical_engineer* ee = (electrical_engineer*)pe2) {
// this employee has an EE degree
}
// «..
}

The decision to allow cross-hierarchy casting also matches the rule that a virtual function can be defined on
one branch of a multiple inheritance hierarchy and called through another.

One way of looking at this checked cast proposal is as a cleanup of the concept of explicit type conver-
sion to make it less error-prone. Given the ~ generally very reasonable — demands of C compatibility, not
all casts can be checked. It might, however, be worth considering a restriction that would close another
well known loophole. Casting an object without virtual functions to an undefined class cannot be checked
and is thus inherently error-prone. As the casting of objects with virtual functions becomes better behaved
such completely unconstrained casts become an anomaly and the programmers that have become used to
the checked cast are more likely to be surprised by the old semantics. Thus it is suggested that

class X;
X* g(ClassWithoutVirtuals* p)
{

return (X*)p;

}
should become illegal; that is, it should be a compile time error.

7 References

The discussion thus far has focussed on pointers. However, a reference can also refer to objects of a
variety of base and derived classes and is subject to casting in a way very similar to pointers. For example
the set example from §3 could be written using references instead of pointers. However, simply rewriting
the critical cast

if (slist<T>* sl = (slist<I>*)s)
to

if (s8list<T>¢ sl = (8list<T>&)s)
wouldn’t make sense in general because there is no ‘‘zero reference’’ to test. Consequently, a reference
cast throws an exception if the cast cannot be performed. The example thus becomes:

void my (set<T>& s)
{
try {
8list<T>¢ sl = (slist<T>&)s; // s is an clist

for (T* P = sl.first(); p; p = sl.next()) ({

// souped up list algorithm
})

-13.
catch (BadCast) (

// ordinary set algorithm /%é“
}

Bee e

N _a~ap

for (T* p = s.first(); p; p = s.next()) ! % %ﬁ,’

a%

A« LAA N

/7 e 4/%7/«/& v/""' (P=)

}

The difference reflects a fundamental difference between reference and pointers. A pointer may or may not
point to an object, whereas a reference can be assumed to refer to one. As ever, the possibility of zero
pointers makes explicit tests necessary where pointers are used.

One might argue that because explicit tests against 0 can be — and therefore occationally will be - acci-
dentally omitted, a checked pointer cast that fails should throw an exception just like a failed checked refer-
ence cast. However, this would only handle one minor source of 0 pointers and not all of those lead to
errors.

8 How Much Information?

The basic notion of the RTTI mechanisms described here is that users need only know as much about
them as they need to and that for maximal ease of programming and implementation independence we
should aim at using as little as possibie:

[1] Preferably, we should use no run-time type information at all and rely exclusively on static (compile

time) checking).

[2] If that is not possible, we should use only checked casts. In that case, we don’t even have to know
the exact name of the object’s type and don’t need to include any header files related to RTTL.

(31 If we must, we can compare typeids and Typeids, but to do that we have to explicitly use
typeid (), and typically also know the exact name of at least some of the types involved. It is
assumed that ‘‘ordinary users’* will never need to examine run-tim type information further.

[4] Finally, if we absolutely do need more information about a type, say because we are trying to imple-
ment a debugger, a data base system, or some other form of object I/O system, we can use opera-
tions on typeids to obtain more detailed information.

The subsections below explains the details of this. The relationship between the objects involved can be

illustrated like this:

Typeid <T>
typeid Type_info
——= -

Both typeid and Typeid<T> are handles to the Type_info object that really holds the type informa-
tion such as the name string.

-14-

Class typeid

Above, we presented the typeid operator only briefly before making its use implicit in the checked
cast mechanism. However, typeid can be used explicitly to gain access to information about types at run

. time. It can be applied to a pointer (only). For example:

void £(X* p, Y& r, int \

{ [
typeid(p); % 3
typeid (0); // error Dav

typeid(&r);

typeid(r); // error

typeid(&i); — ‘///
’ ———

typeid(; // error Word

typeid(; // error

}
Actually, typeid () is a constructor for class typeid:

class Type_info;

class typeid { 17

private: co e N
/o /
public:
typeid(const void*); // this constructor is special

int operator==(typeid) const;
int operator!=(typeid) const;

const char* name() const; // return string representation of type name
const Type_info* info() const; // return type descriptor object

// copy and address-of predefined as usual
bi

That is, 8 typeid can be used for comparisons, for getting more information about the type, and for get-
ting a string representation of the name of the type. A typeid is assumed to be a small object that can be
cheaply copied. Typically, its representation will simply be a pointer to an object of type Type_info, the
one retuned by info (), that really holds information about the type. In particular, information
Type_info is used to implement checked casts.

The typeid constructor takes a const void* argument to allow type checking to be done using
ordinary rules. However, its implementation is special in that it performs a service that cannot be described
in the language because it depends on information that is directly available only to a compiler. Given a
pointer to an object of a type without virtual functions it returns a t ypeid determined by the name of the
type. Given a pointer to an object of a type with virtual functions it retuns a typeid somehow found by
examining the object. This is further described in §10.

Allowing the typeid constructor to take reference arguments was considered but rejected as inessen-
tial and requiring changes to the type checking rules.

The reason for using a typeid class and not simply a pointer type is that it is not clear that every
implementation will be able to guarantee uniqueness of type identification objects. In particular, it is not
obvious that every dynamic loading and linking mechanism will be able to avoid occasional duplication of
such objects. With a typeid class there is no problem defining == to cope with such duplication. It is
also an advantage of the class typeid approach that meaningless operations such as ++ are not supplied
by the language as defaults.

BT e & g ()
Template Class Typeid

The typeid class is a perfectly ordinary class as far as syntax analysis and type checking is con-
cemed, only in the implementation of its constructor is special help from the compiler needed. This was
considered important enough to reject the idea of allowing the typeid constructor to take a type name as
an argument; that is to allow the test from §1 to be written like this:

if (typeid(bp) == typeid(dbox_w_string)) {
rather than the initially somewhat odd looking

if (typeid(bp) == Typeid<dbox_w_string>()) { ?an/ (Fee)

To provide type identification objects for named types we introduce a template class:

template<class T> class Typeid : public typeid {

// typeid needs to be a base to allow comparisons, etc.
public:

Typeid(); // this constructor is special

// copy and address-of predefined as usual

}i

Just like typeid is a perfectly ordinary class except for the implementation of its default constructor
requiring compiler help, Typeid is a perfectly ordinary template class except for the implementation of its
default constructor requiring compiler help. This minimizes the impact on compilers and ensures that the
type identification mechanism fits into the language semantically and syntactically. Once you get used to
templates the

if (typeid (bp) == Typeid<dbox _w_string>()) {

syntax becomes normal and natural. In fact, it is the sizeof operator that begins to look distinctly odd
because it sometimes takes an object and sometimes a type name as an argumentt.

Ideally, Typeid and typeid would have a single name, but because G+ doesn’t allow the overload-
ing of a template name two distinct names are needed. 1t is a cause for worry that Typeid and typeid
differ only slightly and undoubtedly someone will become confused. However, we feel that the confusion
would be greater if the identifiers differed more significantly.

In addition to providing ‘‘constants’’ describing types for which we know the name, the Typeid tem-
plate allows us to provide operations that can only be expressed in terms of the name of a type. We don’t
propose any such functions just now, but prefer to wait for more experience to be gathered. However, we
will discuss the most obvious such operation, new_object (), to illustrate the possibilities and point to
some design choices. Assume we defined

template<class T> class Typeid : public typeid {
/...
T* new_object(); // return pointer to default initialized
// object allocated using new
}i

Having new_object () as a member allows a function to call another with an argument that specifies the
type of some objects to be created. For example:

void tree_constructor(Typeid<Node> node_type)
{

1/ ...

Node* np = node_type.new_object ();

/...
}

but what if the node type we call tree_constructor with doesn’t have a default constructor? To

t Could Ci+ be re-designed from scratch, we would most likely abandon the sizeof operstor in favor of & sizeof member
function on typeid and Typeid.

-16-

define Typeid<T>::node_type.new_object () we must decide on a strategy for dealing with
run-time errors. We would also need another constructor for Typeid to allow tree_constructor ()
to be called with Typeids for classes derived from Node. For example:

// call with Mynode derived from Node:
tree_constructor (Typeid<MyNode>())

on the other hand we would have to reject

// try to fool type system:
tree_constructor (Typeid<int>())

To handie this we would need:

template<class T> class Typeid : public typeid {
/! ...
Typeid(typeid t); // construct Typeid<T> from t
// check at run time that t describes a T

T* new_ocbject(); // return pointer to default initialized

// object allocated using new
Yi

Again, it is not hard to check (at run time) whether an argument t is of the required type T. The hard part
is to decide what error handling strategy to use. In essence, Typeid (typeid) would be the checked
cast for type identifiers.

Detailed Type Information

Consider for the moment how an implementation or a tool could make information about types avail-
able to users at run-time. Say we have a tool that generates a table of (member_name,offset,typeid) entries
for each type. The preferred way of presenting this to the user is to provide an associative array (map, dic-
tionary) of type names and such tables. To get such a member table for a type a user would write:

void f£(B* p)

{
My member_info* tbl = my type table[typeid(p).name()];
// use tbl

}

where My_member_info is the name of the type of our information and my_type_table is the name
of the associative array (Map, Dictionary) in which we keep the (fypename, table) pairs. If we wanted to,
we could index the tables directly with t ypeids rather than requiring the user to use the name () string:

My member_ info* tbl = my type table[typeid(p)]};

It is important to note that this way of associating typeids with information allows several people or
tools to associate different information to types without interfering with each other. This is most important
because the likelihood that someone can come up with a set of information that satisfies all users is zero.
In particular, any set of information that would satisfy most uses would be so large that it would be unac-
ceptable overhead for users that need only minimal run-time type information.

Using these techniques, we might have several independent sets of information about types in a pro-
gram;

-17-

My _type_info Type_info Your_type_info
T T
N\
T
Standard Type Information \
Implementation Specific
Type Information

The function typeid: :info () is logically redundant in that g/l information beyond the identity of
the type could be obtained through the association technique described above. It is assumed, though, that
C++ implementations will contain mechanisms for providing run-time type information beyond the mini-
mum and that a class Type_info will be defined in the standard library to describe such objects. The
typeid: :info () function is intended to provide a standard way of gaining access to such information.
The alternative would be to have a definition for a standard association class.

Acmally, even the function typeid: :name () is logically redundant in that the name string could be
obtained through the association technique described above. However, that wouldn’t allow association
tables to be sorted according to the spelling of type names and would make it less easy for programmers to
provide string representations of type names. We would prefer it to be trivially easy to print the name of a
class. For example:

template<class T>
class Vector
/7 ...
void my_namel () { cout << "Vector<" << Typeida<T>().name() << ’>'; }
void my_name2() { cout << Typeid< Vector<T> >().name(); }
void my name3 () { cout << Typeid<Vector>().name(); }
}:

where all functions happen to be equivalent.
The definition of typeid and Typeid are found in <typeid.h> and the definition of class

Type_info in <Type_info.h>. Note that <typeid.h> must be included if any use is made of the
typeid operator because even the t ype id comparison operators are defined there.

-18-

9 Types without RTTI

Unchecked casts and the absence of run-time determined information for the t ypeid operator to return
cmbesemosmopﬁmizaﬁmdmismadenecessaxybythemquhememofnm-ﬁmemdspaceefﬁciency
and of layout compatibility. However, what does happen if we apply typeid to a pointer to an objectof a
type that does not have a virtual function? There appears to be two practical design alternatives:

[1] Give a (compile-time) error

[2] Return type identification for the static type of the object
We chose the second. The reason was to allow code that operated on every kind of object using run-time
type information. For objects of types without virtal functions the information (and thus the program) is
mlycmempmvidedﬁepdnmamfmmdmaceesshlmm'tmffuedwnvmions that lost type
information. This is exactly the same situation as with every other use of an object. It-will therefore be
possibletowxitepmgnmsmatexmnm-ﬁmetypeinfamaﬁmﬁomeveryobjectanduseitsome uni-
form way.

Becmsetypeidtnlmapointetitissomzﬁnmneeemymmeﬂwaddrxs-ofcpuammgettype
information for an object. For example;

void £(int i, inté r)
{
typeid id = typeid(i); // error: ‘i’ not a pointer

id = typeid(&i); // fine: ‘&i’ is a pointer
id = typeid(zr); // error: ‘r’ not a pointer
id = typeid(&rz); // fine: ‘&r’ is a pointer

}

The typeid of a pointer with the value 0 is a typeid that compare equal to typeid(0) and differ-
ent 10 every typeid that is not the result of using typeid () on an expression with a value 0.

Thetypeidofananay.apoinwrornfaememapoﬁwis.npointzormfemwapoinwiscur-
rently undefined, but will be presented later together with details of class 1ype_info.

10 Implementation Issues

Consider how 10 implement RTT1. Because the mechanism has been designed not to add new syntax or
toaffectthetypecheckingmmcanpﬁerimmmmdmedmﬁnplem&xgmescmmﬁcsofme
typeid () and Typeid () constructors and the checked cast.

To deal with run-time aspects of the mechanism three separate issues must be addressed:

(1] How do we get hold of run-time type information given a pointer or a reference?

(2] How do we use the run-time type information to implement the typeid () constructor and checked

casts?

[3] How do we generate the run-time type information?

The implementation described here is only one of several possible. It assumes a traditional and fairly
straightforward implementation of C++ along the lines described in [1]). That is, each object of a class with
virtual functions contains a pointer (vpt r) to a table of virtual functions (vtbl).

The basic idea is to place a pointer 1o an object describing an object’s type in the vtbl. Such descrip-
tionobjectswillbeofaometypeduivedﬁmndss‘rype_infomdnpoinwnoa'rype_intowillbe
the representation of an object of class typeid.

This basic scheme allows for the typeid () constructor t0 be implemented. Basically typeid () is
nothing but a test to protect against zero-valued pointers followed by a double indirection to retrieve the
pointer 1o the Type_info object.

A call of the Typeid () constructor Typeid<MyType> () degenerates into the name of MyType’s
run-time type identification object.

Here is a plansible memory layout for an object with virtual function table and type information object:

-19-

my_object

‘\\\\\\\\\\SJ Type_info

T

For each type with virtual functions an object of type Type_info is generated. These objects need
not be unique. However, a good implementation will generate unique Type_info objects wherever pos-
sible and only generate Type_info objects for types where some form of run-time type information is
actually used. A easy implementation simply places the Type_ingfo object for a class right next to its
vtbl.

Checked Casts

In most cases the implementation of a cast (D*) px where the static type of *px is X is straightfor-
ward: Retrieve a pointer to the run-time type identification object from *; x, Generate a pointer to the run-
time type identification object for D, and have a library routine see if *p:c’s class is D or a base of D and
return a - possibly slightly adjusted — pointer. The adjustment is needed when X class isn't a first base of D
class. For example:

class D : public A, public X { /* ... */ };

void £()
{
X* px = new D; // px doesn’'t point to the start of the D object
D* pd = (D*)px; // pd should point to the start of the D object
}

This adjustment is trivially implemented.
However, cases where a base class X appears more than once in a class hierarchy needs more care. Con-
sider first ordinary (non-virtual) base classes:

class D1 : public X { /* ... */ };
class D2 : publie X { /* ... */ };
class D : public D1, public D2 { /* ... */ };

void £ (D* pd)

{
X* pxl = (Dl*)pd;
X* px2 = (Di*)pd;

pd = (D*)pxl; // pd should point to the start of the D cbject
pd = (D*)px2; // pd should point to the start of the D object

D1* pdl = (D1%)pxl;
pdl = (D1%)px2;
)

Clearly the adjustments needed for the two (D*) casts are different. Similarly, the adjustments needed for
the two (D1*) casts are different. Consequently, we need to store (in the vtbl or equivalent) the offset of
the sub-object in the overall object. Given that, we can not only perform the correct adjustment of pointers
but also resolve the case of multiple sub-objects of types V and A mentioned in §5.

This also has the beneficial effect of correcting an error in the way ordinary casts used to work. Under
the old, unchecked, semantics pdl= (D1*) px2 simply assumes that px2 pointed to a B sub-object of D1
and (wrongly) adjusts the pointer accordingly.

11 Alternatives

The current proposal is a result of a series of ideas and experiments with both the syntax and semantics
of run-time type identification. Here, we would like to explain some of the alternatives we considered. The
ideals we looked for were the usual: Ease of leaming, ease of reading, direct representation of the underly-
ing semantics, no pointless redundancy, minimal syntactic innovation, minimal compatibility problems
(including a minimal number of new keywords), ease of implementation, reasonable run-time and space
efficiency, etc.

A key line of thought was 1o try to define a notation for run-time type identification that did not involve
anything a user couldn’t define in C++ itself; that is, trying to guarantee that the new mechanisms would fit
smoothly into the language by actually defining it in the language gnd then relying on compilers and other
tools for optimization.

We felt that the typeid () constructor was more appropriate than ¢ ‘‘magic’’ member function that
could be applied to all objects. For example:

void £(X* p, Y& r, int i, char*al[])
{
p->typeid();
r.typeid();
i.typeid():;
a.typeid();
s:typeid();
int::typeid():;
char*::typeid();
’ N
Once all possibilities (incl. the built-in types) had been taken into account the ‘‘magic’’ member function
solutions looked messy.

We considered defining <, <=, etc. on Typeid objects to express relationships in a class hierarchy.
That is easy, but in addition to being 100 cute it also suffers from the problems with an explicit type com-
parison operation as described in §1. Because C++ relies on static type checking, we need a cast in all cases
SO we can just as well make that the test.

There are many ways of using nn-time type information in a language and a diverse set of facilities has
been used in a variety of languages. We considered a couple of alternatives with implications beyond run-
time type identification. Given, RTTI one can support ‘‘unconstrained methods;’” that is, one could hold
enough information in the RTTI for a class to check at run time whether & given function was supported or
not. Thus one could support Smalltalk-style, exclusively dynamically-checked functions. However, we felt
no need for that and considered that extension as going contrary to our effort to encourage efficient and
type-safe programming. In other words, that extension would take C++ m a new direction contrary 10 its

-21-

direction so far. The checked cast enables a check-and-call strategy:

if (D* pd = (D*)pb) { // is *pb a D?
pd->dfct(); // call D function
/7 ...

}

rather than the call-and-have-the-call-check strategy of Smalltalk:
pb->dfct(); // hope pd has a dfct

The check-and-call strategy provides more static checking (we know at compile time that dfct is defined
for class D), doesn’t impose an overhead on the vast majority of calls that don't need the check, and pro-
vides a highly visible clue that something beyond the ordinary isgoing on. A

A more promising use of RTTI would be to support *‘multi-methods,” that is the ability to select a vir-
tual function based on more than one object. This would be a boon to writers of code that deals with binary
operations on diverse objects. Generalized addition, geometric intersect operations, and other reasonably
common operations belong to this class of problem. We make no such proposal, however, because we can-
not clearly grasp the implications of such a change and do not want to propose a major new extension with-
out experience. -

12 Survey of Issues

There are several issues and proposals wrapped up into the RTTI mechanism. They can and should be
considered individually but we feel that the final evaluation of any run-time type identification scheme
should be based on the utility and elegance of a complete set of features. The individual aspects of the pro-
posal here are:

(1] The checked cast notion (as opposed to an explicit checked cast operator or some alternative notion

such as an isKindOf operator). —

{2] The use of virtual functions to distinguish types that support run-time type identification from other
types (as opposed to supporting RTTI for all types or to support PTTI for types explicitly declared
to support it). :

[3] The syntax extension allowing declarations in conditions.

(4] The notion of cross hierarchy casting (as opposed to allowing casts only within known class hierar-

chies). '

[5] The notion of casting to a reference (as opposed to disallowing reference casts and thus avoiding
the use of exceptions).

[6] The introduction of a typeid class with a *‘magic”* constructo (as opposed to either no way of
getting access to objects describing a type or some special operater for gaining access).

(7] The introduction of a typeid class (as opposed to using a pointer to a Type_in£o object).

(8] The introduction of a Typeid class template derived from typeid to provide operations that can
only be described using actual type names (as opposed to introducing special syntax and special
operators for that).

(9] The notion that objects of types that do not support RTTI are acceptable to the cast and typeid
operators yielding values that depend on their static type (as opposed to causing compile time
errors or supplying RTTI for every object).

(10] Support for casting to a non-unique sub-object from within that sub-object (as opposed to simply
defining casting as conversion from the run-time determined class of the object to the desired
type); §5.

[11] The notion of a Type_info class defined in a standard library (as opposed to supporting checkcd
casts and type identity only).

There are of course many additional details, such as the exact name «f the BadCast exception and
whether class t ypeid and class Type_info ought to be declared in the same header file, but we feel that
any RTTI facility designed along the lines we suggest will be characterized by the choices outlined here.

le

&8 Mo/{

13 How to Mangge until RTTI comes

This proposal for RTTI is most unlikely to be available on your C¢+ implementation any day soon.
What then - if you need to — can you do to get the benefits some ‘variant RTTI until becomes generally
available? If you use one of the major libraries, you already have some mechanism available and even if
you don’t you can build your own using the technique described in [9]. The real problem is how to stay
canpmiblewnhothersandtomakemthatywcan convert the the “‘real’* RTTI system once it becomes
available.

We suggest you write your code in terms of five macros

typeid static_type_info(type) // get typeid for type

typeid ptr_type_info (pointer) // get typeid for pointer
typeid ref_type_info(reference) // gst typeid for reference
pointer ptr_cast (type,pointer) // eonvert pointer to type*
reference ref_cast (type,reference) // convert refersnce to typeé

We believe that these can be defined for any reasonable RTTI mechanism so that your user code becomes
independent of its particulars. That makes portability managesble and once your C++ implementation pro-
vides a standard RTTI mechanism you can either redefine your macros or (preferably) rewrite the code to
use it directly.

14 Acknowledgements

Brian Kemighan, Andrew Koenig, Doug McIiroy, Rob Murray, and Jonathan Shopiro provided valu-
able insights that helped shaps this proposal. Tom Penello checked that allowing declarations in conditions
would not introduce any new synisx ambiguities. Doug Mcllroy was the one that caused our thinking to
shift from an explicit (and named) checked cast operaior to simply checking ordinary casts wherever possi-
ble. ‘Michey Mehta and Shankar Unni provided many ideas of different approaches to run-time type identi-
fication and its implementation that helped better undesstand problems and solutions presented in this pro-
posal.

15 Rererences

{11 Margaret A. Ellis, BJame Stroustrup: The Annotated C++ Refereuce -Manual. Addison-Wesley,
1990.
[2) Mary Foiitsng, Martie Nesth: Chaecked Guw-dind Long Qvefm Exporience in the Design of a C++
Class Library. USENIX C++ Comicscase Procesdings, Ap:il, 1991,
(3] Keith E. Gorlea: 4 Objeet-@m&aed Clzss Libvery for Co< Pr@grmp; Proceedings of the USENIX
G+ Workshop, 1987,
(4] Keith E. Goricn, Sanford R Orlow, snd Femvy S. Pﬁm Dma Absiraction and Object-Oriented
Programming in Co+, Wiley, 1990.
[S] John A. Intewvens, Mifrk A. Linton: Rwuimme Aceess i0 Eype Information in C++. USENIX C++
Conference Proceedings, 1990.
[6] Andrew Kmmzmd Bjarne Stroustrup: Exception Hawdiizg for C+#+. USENIX C+ Conference Pro-
' ceedings, 1990, '
{71 Mark A: Linioa, John M. Viissides, and Paxl R. Calder: C@mpomg user interfaces with InterViews.
" Computer, 22(2):8-22, February 1989.
(8] Dmiuy Lenkov, Michey Mehta, Shankar Unni: Type Ieiewﬁmw;a im C++. USENIX C++ Confer-
ence Proceedings, April, 1991.
" {9] Bjame Swroustrup: The C++ Programming Langusge (: S&@&eﬁ E&M 1), Addison-Wesley, 1991,
[10] Andre Weinand, Erich Gamma, and Rudolf Mzsy: ET++ - An Objzct-Oriented Application Frame-
work ir. C++.- ACM OOPSLA'88 Conference Proceedings, 1988.

